Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biochem Mol Biol Educ ; 2023 Jun 14.
Article in English | MEDLINE | ID: covidwho-20235146

ABSTRACT

The COVID-19 pandemic caused several educational challenges. Conducting laboratory experiments was an uphill task during the pandemic. Here, we developed a low-cost and reliable home-based experimental setup to teach column and thin layer chromatography (TLC) using silica gel granules available at home. Powdered silica gel, prepared by grinding silica gel granules, was used as the stationary phase. Iso-propyl alcohol, purchased from a pharmacy, was diluted with water and used as the mobile phase. A food coloring was chromatographically separated using the designed column. Moreover, TLC plates were prepared using powdered silica gel and a drop of food coloring was separated on TLC plates using the same mobile phase. In the article, we show our experiences by providing methods used to implement this experimental setup. We assume that this experimental setup will be helpful for other universities, research institutes and schools to develop online laboratory curricula to demonstrate basic chromatography techniques required for subjects such as chemistry, biochemistry and biology.

2.
Global Health ; 17(1): 59, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1238728

ABSTRACT

BACKGROUND: The COVID-19 pandemic is adversely impacting modern human civilization. A global view using a systems science approach is necessary to recognize the close interactions between health of animals, humans and the environment. DISCUSSION: A model is developed initially by describing five sequential or parallel steps on how a RNA virus emerged from animals and became a pandemic: 1. Origins in the animal kingdom; 2. Transmission to domesticated animals; 3. Inter-species transmission to humans; 4. Local epidemics; 5. Global spread towards a pandemic. The next stage identifies global level determinants from the physical environments, the biosphere and social environment that influence these steps to derive a generic conceptual model. It identifies that future pandemics are likely to emerge from ecological processes (climate change, loss of biodiversity), anthropogenic social processes (i.e. corporate interests, culture and globalization) and world population growth. Intervention would therefore require modifications or dampening these generators and prevent future periodic pandemics that would reverse human development. Addressing issues such as poorly planned urbanization, climate change and deforestation coincide with SDGs such as sustainable cities and communities (Goal 11), climate action (Goal 13) and preserving forests and other ecosystems (Goal 15). This will be an added justification to address them as global priorities. Some determinants in the model are poorly addressed by SDGs such as the case of population pressures, cultural factors, corporate interests and globalization. The overarching process of globalization will require modifications to the structures, processes and mechanisms of global governance. The defects in global governance are arguably due to historical reasons and the neo-liberal capitalist order. This became evident especially in the aftermath of the COVID-19 when the vaccination roll-out led to violations of universal values of equity and right to life by some of the powerful and affluent nations. A systems approach leads us to a model that shows the need to tackle several factors, some of which are not adequately addressed by SDGs and require restructuring of global governance and political economy.


Subject(s)
COVID-19/prevention & control , Global Health/trends , Systems Analysis , COVID-19/transmission , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data , Sustainable Development/trends
SELECTION OF CITATIONS
SEARCH DETAIL